Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 20(2): 20230346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378140

RESUMO

Ongoing climate change has already been associated with increased disease outbreaks in wild and farmed fish. Here, we evaluate the current knowledge of climate change-related ecoimmunology in teleosts with a focus on temperature, hypoxia, salinity and acidification before exploring interactive effects of multiple stressors. Our literature review reveals that acute and chronic changes in temperature and dissolved oxygen can compromise fish immunity which can lead to increased disease susceptibility. Moreover, temperature and hypoxia have already been shown to enhance the infectivity of certain pathogens/parasites and to accelerate disease progression. Too few studies exist that have focussed on acidification, but direct immune effects seem to be limited while salinity studies have led to contrasting results. Likewise, multi-stressor experiments essential for unravelling the interactions of simultaneously changing environmental factors are still scarce. This ultimately impedes our ability to estimate to what extent climate change will hamper fish immunity. Our review about epigenetic regulation mechanisms highlights the acclimation potential of the fish immune response to changing environments. However, due to the limited number of epigenetic studies, overarching conclusions cannot be drawn. Finally, we provide an outlook on how to better estimate the effects of realistic climate change scenarios in future immune studies in fish.


Assuntos
Mudança Climática , Epigênese Genética , Animais , Peixes/fisiologia , Temperatura , Hipóxia
2.
Proc Natl Acad Sci U S A ; 119(22): e2201919119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617428

RESUMO

Plasticity can allow organisms to maintain consistent performance across a wide range of environmental conditions. However, it remains largely unknown how costly plasticity is and whether a trade-off exists between plasticity and performance under optimal conditions. Biological rates generally increase with temperature, and to counter that effect, fish use physiological plasticity to adjust their biochemical and physiological functions. Zebrafish in the wild encounter large daily and seasonal temperature fluctuations, suggesting they should display high physiological plasticity. Conversely, laboratory zebrafish have been at optimal temperatures with low thermal fluctuations for over 150 generations. We treated this domestication as an evolution experiment and asked whether this has reduced the physiological plasticity of laboratory fish compared to their wild counterparts. We measured a diverse range of phenotypic traits, from gene expression through physiology to behavior, in wild and laboratory zebrafish acclimated to 15 temperatures from 10 °C to 38 °C. We show that adaptation to the laboratory environment has had major effects on all levels of biology. Laboratory fish show reduced plasticity and are thus less able to counter the direct effects of temperature on key traits like metabolic rates and thermal tolerance, and this difference is detectable down to gene expression level. Rapid selection for faster growth in stable laboratory environments appears to have carried with it a trade-off against physiological plasticity in captive zebrafish compared with their wild counterparts.


Assuntos
Temperatura Corporal , Termotolerância , Peixe-Zebra , Animais , Fenótipo , Temperatura , Termotolerância/genética , Termotolerância/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
3.
Gen Comp Endocrinol ; 311: 113854, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265345

RESUMO

Hormones and mRNA transcripts of maternal origin deposited in the egg may affect early embryonic development in oviparous species. These hormones include steroids, such as estradiol-17ß (E2), testosterone (T), 11-ketotestosterone (11-kt), 17α,20ß-dihydroxy-4-pregnen-3-one (DHP), and cortisol, which also play an important role in fish reproduction. In European eel, Anguilla anguilla, which does not reproduce naturally in captivity, vitellogenesis in female broodstock is commonly induced by administration of salmon or carp pituitary extract (PE) as an exogenous source of gonadotropins, while follicular maturation is stimulated by a priming dose of PE followed by provision of DHP as a maturation inducing hormone. In this regard, the main purpose of the present study was to evaluate effects of induced follicular maturation on reproductive success in European eel, focusing on maternal transfer and dynamics of steroids and mRNA transcripts of growth- and development-related genes throughout embryogenesis. The results showed that maternal blood plasma concentrations of E2, T and DHP were reflected in the unfertilized eggs. Moreover, a negative relationship between concentrations of E2 and DHP in eggs and embryos and quality parameters measured as fertilization success, cleavage abnormalities, embryonic survival, and hatch success was found. Concomitant mRNA transcript abundance analysis including genes involved in stress response (hsp70, hsp90), somatotropic axis (gh, igf1, igf2a, igf2b), lipid (cpt1a, cpt1b, pigf5) and thyroid metabolism (dio1, dio2, dio3, thrαb, thrßa, thrßb) varied among unfertilized egg batches. For the majority of genes, mRNA abundance increased during the maternal-to-zygotic transition in connection to activation of the transcription of the embryos own genome. mRNA abundance of dio1, cpt1a and cpt1b throughout embryogenesis was related to embryonic developmental competence. Notably, mRNA abundance of dio3 was positively associated with E2 concentrations, while the mRNA abundance of thrαb was negatively related to T concentrations in the unfertilized eggs, which may suggest an interaction between the thyroid and steroid hormone systems. Altogether, maternal plasma concentrations of E2 and DHP were reflected in the eggs, with high concentrations of these steroids in the eggs being negatively associated with embryonic developmental competence. Additionally, high transcript levels of two of the investigated genes (dio1, cpt1b) were positively associated with embryonic developmental competence. This study reveals maternal transfer of steroids and mRNA transcripts to the eggs, which may be significant contributors to the variability in embryonic survival observed in European eel captive reproduction.


Assuntos
Anguilla , Anguilla/genética , Animais , Desenvolvimento Embrionário/genética , Feminino , RNA Mensageiro/genética , Esteroides/metabolismo , Vitelogênese
4.
Fish Shellfish Immunol ; 87: 105-119, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30590168

RESUMO

Temperature is a major factor that modulates the development and reactivity of the immune system. Only limited knowledge exists regarding the immune system of the catadromous European eel, Anguilla anguilla, especially during the oceanic early life history stages. Thus, a new molecular toolbox was developed, involving tissue specific characterisation of 3 housekeeping genes, 9 genes from the innate and 3 genes from the adaptive immune system of this species. The spatial pattern of immune genes reflected their function, e.g. complement component c3 was mainly produced in liver and il10 in the head kidney. Subsequently, the ontogeny of the immune system was studied in larvae reared from hatch to first-feeding at four temperatures, spanning their thermal tolerance range (16, 18, 20, and 22 °C). Expression of some genes (c3 and igm) declined post hatch, whilst expression of most other genes (mhc2, tlr2, il1ß, irf3, irf7) increased with larval age. At the optimal temperature, 18 °C, this pattern of immune-gene expression revealed an immunocompromised phase between hatch (0 dph) and teeth-development (8 dph). The expression of two of the studied genes (mhc2, lysc) was temperature dependent, leading to increased mRNA levels at 22 °C. Additionally, at the lower end of the thermal spectrum (16 °C) immune competency appeared reduced, whilst close to the upper thermal limit (22 °C) larvae showed signs of thermal stress. Thus, protection against pathogens is probably impaired at temperatures close to the critical thermal maximum (CTmax), impacting survival and productivity in hatcheries and natural recruitment.


Assuntos
Anguilla/imunologia , Temperatura , Imunidade Adaptativa/genética , Anguilla/genética , Anguilla/crescimento & desenvolvimento , Animais , Aquicultura , Imunidade Inata/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia
5.
Front Physiol ; 9: 1477, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459634

RESUMO

Digestive system functionality of fish larvae relies on the onset of genetically pre-programmed and extrinsically influenced digestive functions. This study explored how algal supplementation (green-water) until 14 days post hatch (dph) and the ingestion of food [enriched rotifer (Brachionus plicatilis) paste] from 15 dph onward affects molecular maturation and functionality of European eel larval ingestion and digestion mechanisms. For this, we linked larval biometrics to expression of genes relating to appetite [ghrelin (ghrl), cholecystokinin (cck)], food intake [proopiomelanocortin (pomc)], digestion [trypsin (try), triglyceride lipase (tgl), amylase (amyl)], energy metabolism [ATP synthase F0 subunit 6 (atp6), cytochrome-c-oxidase 1 (cox1)], growth [insulin-like growth factor (igf1)] and thyroid metabolism [thyroid hormone receptors (thrαA, thrßB)]. Additionally, we estimated larval nutritional status via nucleic acid analysis during transition from endogenous and throughout the exogenous feeding stage. Results showed increased expression of ghrl and cck on 12 dph, marking the beginning of the first-feeding window, but no benefit of larviculture in green-water was observed. Moreover, expression of genes relating to protein (try) and lipid (tgl) hydrolysis revealed essential digestive processes occurring from 14 to 20 dph. On 16 dph, a molecular response to initiation of exogenous feeding was observed in the expression patterns of pomc, atp6, cox1, igf1, thrαA and thrßB. Additionally, we detected increased DNA contents, which coincided with increased RNA contents and greater body area, reflecting growth in feeding compared to non-feeding larvae. Thus, the here applied nutritional regime facilitated a short-term benefit, where feeding larvae were able to sustain growth and better condition than their non-feeding conspecifics. However, RNA:DNA ratios decreased from 12 dph onward, indicating a generally low larval nutritional condition, probably leading to the point-of-no-return and subsequent irreversible mortality due to unsuccessful utilization of exogenous feeding. In conclusion, this study molecularly identified the first-feeding window in European eel and revealed that exogenous feeding success occurs concurrently with the onset of a broad array of enzymes and hormones, which are known to regulate molecular processes in feeding physiology. This knowledge constitutes essential information to develop efficient larval feeding strategies and will hopefully provide a promising step toward sustainable aquaculture of European eel.

6.
PLoS One ; 13(6): e0198294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897966

RESUMO

European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2ß, aqp1dup, aqpe), stress response (hsp70, hsp90), and thyroid metabolism (thrαA, thrαB, thrßB, dio1, dio2, dio3) were differentially expressed throughout larval development, while nkcc1α, nkcc2ß, aqp3, aqp1dup, aqpe, hsp90, thrαA and dio3 showed lower expression in response to the salinity reduction. Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely facilitated the observed increased survival, improved biometry and enhanced growth efficiency. Additionally, the salinity reduction decreased the amount of severe deformities such as spinal curvature and emaciation but also induced an edematous state of the larval heart, resulting in the most balanced mortality/deformity ratio when salinity was decreased on 3 dph and at 2 psu/day. However, the persistency of the pericardial edema and if or how it represents an obstacle in further larval development needs to be further clarified. In conclusion, this study clearly showed that salinity reduction regimes towards iso-osmotic conditions facilitated the European eel pre-leptocephalus development and revealed the existence of highly sensitive and regulated osmoregulation processes at such early life stage of this species.


Assuntos
Anguilla/fisiologia , Redes Reguladoras de Genes , Salinidade , Animais , Metabolismo Energético , Feminino , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Estresse Fisiológico
7.
Sci Rep ; 7(1): 15022, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118332

RESUMO

The reliable production of marine fish larvae is one of the major bottlenecks in aquaculture due to high mortalities mainly caused by infectious diseases. To evaluate if the compound poly-ß-hydroxybutyrate (PHB) might be a suitable immunoprophylactic measure in fish larviculture, its capacity to improve immunity and performance in European sea bass (Dicentrarchus labrax) yolk-sac larvae was explored. PHB was applied from mouth opening onwards to stimulate the developing larval immune system at the earliest possible point in time. Larval survival, growth, microbiota composition, gene expression profiles and disease resistance were assessed. PHB administration improved larval survival and, furthermore, altered the larva-associated microbiota composition. The bacterial challenge test using pathogenic Vibrio anguillarum revealed that the larval disease resistance was not influenced by PHB. The expression profiles of 26 genes involved e.g. in the immune response showed that PHB affected the expression of the antimicrobial peptides ferritin (fer) and dicentracin (dic), however, the response to PHB was inconsistent and weaker than previously demonstrated for sea bass post-larvae. Hence, the present study highlights the need for more research focusing on the immunostimulation of different early developmental stages for gaining a more comprehensive picture and advancing a sustainable production of high quality fry.


Assuntos
Doenças dos Peixes/prevenção & controle , Hidroxibutiratos/farmacologia , Poliésteres/farmacologia , Vibrioses/veterinária , Vibrio/efeitos dos fármacos , Animais , Aquicultura/métodos , Bass/genética , Bass/imunologia , Bass/microbiologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Larva/microbiologia , Análise Multivariada , Fatores de Tempo , Vibrio/imunologia , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/microbiologia , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/metabolismo , Saco Vitelino/microbiologia
8.
PLoS One ; 12(8): e0182726, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28806748

RESUMO

Temperature is important for optimization of rearing conditions in aquaculture, especially during the critical early life history stages of fish. Here, we experimentally investigated the impact of temperature (16, 18, 20, 22 and 24°C) on thermally induced phenotypic variability, from larval hatch to first-feeding, and the linked expression of targeted genes [heat shock proteins (hsp), growth hormone (gh) and insulin-like growth factors (igf)] associated to larval performance of European eel, Anguilla anguilla. Temperature effects on larval morphology and gene expression were investigated throughout early larval development (in real time from 0 to 18 days post hatch) and at specific developmental stages (hatch, jaw/teeth formation, and first-feeding). Results showed that hatch success, yolk utilization efficiency, survival, deformities, yolk utilization, and growth rates were all significantly affected by temperature. In real time, increasing temperature from 16 to 22°C accelerated larval development, while larval gene expression patterns (hsp70, hsp90, gh and igf-1) were delayed at cold temperatures (16°C) or accelerated at warm temperatures (20-22°C). All targeted genes (hsp70, hsp90, gh, igf-1, igf-2a, igf-2b) were differentially expressed during larval development. Moreover, expression of gh was highest at 16°C during the jaw/teeth formation, and the first-feeding developmental stages, while expression of hsp90 was highest at 22°C, suggesting thermal stress. Furthermore, 24°C was shown to be deleterious (resulting in 100% mortality), while 16°C and 22°C (~50 and 90% deformities respectively) represent the lower and upper thermal tolerance limits. In conclusion, the high survival, lowest incidence of deformities at hatch, high yolk utilization efficiency, high gh and low hsp expression, suggest 18°C as the optimal temperature for offspring of European eel. Furthermore, our results suggest that the still enigmatic early life history stages of European eel may inhabit the deeper layer of the Sargasso Sea and indicate vulnerability of this critically endangered species to increasing ocean temperature.


Assuntos
Anguilla/crescimento & desenvolvimento , Anguilla/genética , Regulação da Expressão Gênica no Desenvolvimento , Temperatura , Anguilla/anatomia & histologia , Animais , Gema de Ovo/metabolismo , Feminino , Hormônio do Crescimento/metabolismo , Larva/anatomia & histologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Somatomedinas/metabolismo , Análise de Sobrevida
9.
Fish Shellfish Immunol ; 48: 94-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26564474

RESUMO

Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, ß-glucan (MacroGard(®)) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast ß-1,3/1,6-glucan in form of MacroGard(®) at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, microbiota analysis, trypsin activity and size measurements. Along with the feeding of ß-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard(®) fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by ß-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-α and il-1ß was observed. We conclude that the administration of MacroGard(®) induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot.


Assuntos
Suplementos Nutricionais , Linguados , Fatores Imunológicos/farmacologia , beta-Glucanas/farmacologia , Aeromonas/genética , Animais , Artemia , Quimotripsina/genética , Complemento C3/genética , DNA Bacteriano/genética , Dieta , Proteínas de Peixes/genética , Linguados/crescimento & desenvolvimento , Linguados/imunologia , Linguados/metabolismo , Linguados/microbiologia , Flavobacteriaceae/genética , Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Interleucina-1beta/genética , Metabolismo dos Lipídeos/genética , Microbiota/efeitos dos fármacos , Rotíferos , Tripsina/genética , Fator de Necrose Tumoral alfa/genética , Vibrio/genética
10.
Vet Microbiol ; 176(1-2): 19-31, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25596969

RESUMO

Whilst Herpesviridae, which infect higher vertebrates, actively influence host immune responses to ensure viral replication, it is mostly unknown if Alloherpesviridae, which infect lower vertebrates, possess similar abilities. An important antiviral response is clearance of infected cells via apoptosis, which in mammals influences the outcome of infection. Here, we utilise common carp infected with CyHV-3 to determine the effect on the expression of genes encoding apoptosis-related proteins (p53, Caspase 9, Apaf-1, IAP, iNOS) in the pronephros, spleen and gills. The influence of CyHV-3 on CCB cells was also studied and compared to SVCV (a rhabdovirus) which induces apoptosis in carp cell lines. Although CyHV-3 induced iNOS expression in vivo, significant induction of the genetic apoptosis pathway was only seen in the pronephros. In vitro CyHV-3 did not induce apoptosis or apoptosis-related expression whilst SVCV did stimulate apoptosis. This suggests that CyHV-3 possesses mechanisms similar to herpesviruses of higher vertebrates to inhibit the antiviral apoptotic process.


Assuntos
Carpas/virologia , Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/fisiologia , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/fisiologia , Animais , Apoptose , Linhagem Celular , Regulação da Expressão Gênica , Brânquias/virologia , Infecções por Herpesviridae/virologia , Pronefro/virologia , Infecções por Rhabdoviridae/virologia , Baço/virologia
11.
Dis Aquat Organ ; 109(3): 187-99, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24991845

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a highly virulent and lethal disease of common carp Cyprinus carpio and its ornamental koi varieties. However, specific knowledge about immune mechanisms behind the infection process is very limited. We aimed to evaluate the effect of the CyHV-3 infection on the profile of 2 major components of the common carp immune acute phase response: the C-reactive protein (CRP) and the complement system. Common carp were infected with CyHV-3 by bath immersion. Fish were sampled before the infection and at 6, 12, 24, 72, 120 and 336 h post-infection for serum and head kidney, liver, gill and spleen tissues. CRP levels and complement activity were determined from the serum, whereas CRP- and complement-related genes (crp1, crp2, c1rs, bf/c2, c3, masp2) expression profiles were analysed in the tissues by quantitative PCR. Both CRP levels and complement activity increased significantly up to 10- and 3-fold, respectively, in the serum of infected fish during the challenge. Analysis revealed distinct organ- and time-dependent expression profile patterns for all selected genes. These results suggest that CRP and complement behave as acute phase reactants to CyHV-3 infection in common carp with an organ- and time-dependent response.


Assuntos
Proteína C-Reativa/metabolismo , Carpas , Proteínas do Sistema Complemento/metabolismo , Doenças dos Peixes/metabolismo , Infecções por Herpesviridae/veterinária , Herpesviridae/classificação , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animais , Proteína C-Reativa/genética , Proteínas do Sistema Complemento/genética , Doenças dos Peixes/genética , Regulação da Expressão Gênica , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia
12.
Fish Shellfish Immunol ; 39(2): 285-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24830773

RESUMO

The effect of ß-glucan as a feed additive on the serum and gene profile of C-reactive protein (CRP) and complement acute phase responses was ascertained in common carp Cyprinus carpio. In addition effects of subsequent intraperitoneal injections of pathogen-associated molecular patterns (PAMPs), i.e. LPS or poly(I:C), to mimic bacterial or viral infection respectively, were studied. Carp were first orally fed with ß-glucan (MacroGard®) with a daily ß-glucan intake of 6 mg per kg body weight or with control food for 25 days and then injected with PBS containing either LPS (4 mg/kg) or poly(I:C) (5 mg/kg) or PBS alone. Fish were sampled during the 25 days of the feeding period and up to 7 days post-PAMPs injections for serum and liver, head kidney and mid-gut tissues. Oral administration of ß-glucan for 25 days significantly increased serum CRP levels and alternative complement activity (ACP). In addition, the subsequent LPS and poly(I:C) challenges significantly affected CRP and complement related gene expression profiles (crp1, crp2, c1r/s, bf/c2, c3 and masp2), with the greatest effects observed in the ß-glucan fed fish. However, in fish fed ß-glucan the PAMPs injections had less effects on CRP levels and complement activity in the serum than in control fed fish, suggesting that the 25 days of ß-glucan immunostimulation was sufficient enough to reduce the effects of LPS and poly(I:C) injections. Results suggest that MacroGard® stimulated CRP and complement responses to PAMPs immunological challenges in common carp thus highlighting the beneficial ß-glucan immunostimulant properties.


Assuntos
Reação de Fase Aguda/metabolismo , Proteína C-Reativa/metabolismo , Carpas/imunologia , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , beta-Glucanas/farmacologia , Análise de Variância , Animais , Proteína C-Reativa/genética , Via Alternativa do Complemento/imunologia , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Poli I-C/administração & dosagem , Poli I-C/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Fish Shellfish Immunol ; 36(2): 494-502, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24370748

RESUMO

We have previously observed that in common carp (Cyprinus carpio), administration of ß-glucan (MacroGard®) as feed additive leads to a lower expression of pro-inflammatory cytokines suggesting that this immunostimulant may be preventing an acute and potentially dangerous response to infection, particularly in the gut. However, in general, mechanisms to detect and eliminate pathogens must also be induced in order to achieve an efficient clearance of the infection. Protection against viral diseases acquired through ß-glucan-supplemented feed has been extensively reported for several experimental models in fish but the underlining mechanisms are still unknown. Thus, in order to better characterize the antiviral action induced by ß-glucans in fish, MacroGard® was administered daily to common carp in the form of supplemented commercial food pellets. Carp were fed for a period of 25 days prior to intra-peritoneal injection with polyinosinic:polycytidylic acid (poly(I:C)), a well-known double-stranded RNA mimic that triggers a type-I interferon (IFN) response. Subsequently, a set of immune related genes, including mx, were analysed by real-time PCR on liver, spleen, head kidney and mid gut tissues. Results obtained confirmed that treatment with ß-glucan alone generally down-regulated the mRNA expression of selected cytokines when compared to untreated fish, while mx gene expression remained stable or was slightly up-regulated. Injection with poly(I:C) induced a similar down-regulated gene expression pattern for cytokines in samples from ß-glucan fed fish. In contrast, poly(I:C) injection markedly increased mx gene expression in samples from ß-glucan fed fish but hardly in samples from fish fed control feed. In an attempt to explain the high induction of mx, we studied Toll-like receptor 3 (TLR3) gene expression in these carp. TLR3 is a prototypical pattern recognition receptor considered important for the binding of viral double-stranded RNA and triggering of a type-I IFN response. Through genome data mining, two sequences for carp tlr3 were retrieved (tlr3.1 and tlr3.2) and characterized. Constitutive gene expression of both tlr3.1 and tlr3.2 was detected by real-time PCR in cDNA of all analysed carp organs. Strikingly, 25 days after ß-glucan feeding, very high levels of tlr3.1 gene expression were observed in all analysed organs, with the exception of the liver. Our data suggest that ß-glucan-mediated protection against viral diseases could be due to an increased Tlr3-mediated recognition of ligands, resulting in an increased antiviral activity of Mx.


Assuntos
Carpas , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Resistência a Myxovirus/genética , Poli I-C/farmacologia , Receptor 3 Toll-Like/metabolismo , beta-Glucanas/imunologia , Sequência de Aminoácidos , Animais , Carpas/genética , Carpas/imunologia , Dieta/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Indutores de Interferon/farmacologia , Dados de Sequência Molecular , Proteínas de Resistência a Myxovirus/metabolismo , Alinhamento de Sequência/veterinária , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...